This article was downloaded by:
On: 25 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Liquid Crystals

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713926090

Synthesis and mesomorphic properties of 4-alkylamino-4'-substituted diphenyldiacetylenes

Rajesh A. Shenoy; Mary E. Neubert; David G. Abdallah; Sandra S. Keast; Rolfe G. Petschek

Online publication date: 06 August 2010

To cite this Article Shenoy, Rajesh A. , Neubert, Mary E., Abdallah, David G., Keast, Sandra S. and Petschek, Rolfe G.(2000) 'Synthesis and mesomorphic properties of 4-alkylamino-4'-substituted diphenyldiacetylenes', Liquid Crystals, 27: 6, $801-812$
To link to this Article: DOI: 10.1080/026782900202291
URL: http://dx.doi.org/10.1080/026782900202291

PLEASE SCROLL DOWN FOR ARTICLE

[^0]
Synthesis and mesomorphic properties of 4-alkylamino-4'-substituted diphenyldiacetylenes

RAJESH A. SHENOY, MARY E. NEUBERT*, DAVID G. ABDALLAH, JR., SANDRA S. KEAST
Glenn H. Brown Liquid Crystal Institute, Kent State University, Kent, Ohio 44242-0001, USA

and ROLFE G. PETSCHEK
Physics Department, Case Western Reserve University, Cleveland, Ohio 44106-7079, USA
(Received 6 October 1999; accepted 20 December 1999)
Various substituted aminodiphenyldiacetylenes of the type with $\mathrm{X}=\mathrm{C}_{3} \mathrm{H}_{7}$,

Abstract

 $\mathrm{C}_{5} \mathrm{H}_{11}, \mathrm{~F}$ or NO_{2} and $R, R^{\prime}=\mathrm{H}, \mathrm{CH}_{3}-\mathrm{C}_{6} \mathrm{H}_{13}$ were synthesized and their mesomorphic properties determined. Semi-empirical and ab initio quantum chemical calculations using AM1, 421G and $631 \mathrm{G}^{*}$ suggested that the amino group would increase the dielectric anisotropy and optical birefringence as compared to the alkyl chain. Mesomorphic properties were found to be poor with the maximum nematic phase range being $44.8^{\circ} \mathrm{C}$ and many of the compounds having no nematic phase. Both melting temperatures and enthalpies for those having nematic phases were too high to form good eutectic mixtures.

1. Introduction

In recent years, numerous unsymmetrical $4,4^{\prime}$-disubstituted diphenyldiacetylenes $\mathbf{1}$ have been synthesized [1-7]. Many of these compounds have wide range, low

temperature nematic phases with low viscosity and large optical birefringence Δn (c. 0.28 in the IR region [8]); they usually have small positive dielectric anisotropies $\Delta \varepsilon$, although appreciable negative dielectric anisotropies are possible. We were interested in modifying the structure of these diacetylenes to increase both the Δn and $\Delta \varepsilon$ values while maintaining the wide nematic phases and the low viscosities.
Large positive values of $\Delta \varepsilon$ typically result from large dipoles along the long axis of the molecule, i.e. large longitudinal dipoles. Rather small dielectric anisotropies result from the intrinsic polarizabilities of the molecules, while much larger dielectric anisotropies result from the reorientation of dipoles. Longitudinal dipoles contribute to the positive $\Delta \varepsilon$, transverse dipoles contribute to the

[^1]negative $\Delta \varepsilon$. Known practical diacetylene compounds have either alkyl or alkoxy substituents. The dipoles associated with alkyl substituents are small; those associated with alkoxy substituents are larger but are at an appreciable angle to the molecular long axis, typically at a large enough angle that they are expected to contribute more to the negative than to the positive dielectric anisotropy. This accounts for the rather low dielectric anisotropies in these materials.
We set out to test whether molecules with substituted amines but without strong acceptors might resolve this difficulty. Systems with substituted amines are known that have liquid crystal properties, although this moiety does decrease the tendency to show these properties relative to an alkyl or alkoxy group. This is to some extent counteracted by the possibility of attaching two different chains to the amine, resulting in less symmetric and therefore less crystallizable molecules. However, unlike alkoxy and alkyl substituents, amines, particularly disubstituted amines, have small transverse and significant longitudinal dipoles. Similarly, the push-pull nature of the diacetylene-amine phenyl ring was expected to increase the electronic polarizability. Semi-empirical and $a b$ initio quantum chemical calculations using AMI,

421 G and 631 G * confirmed this chemical intuition. This suggests that an amino substituent ($Y=\mathrm{N} R R^{\prime}$) along with an alkyl substituent ($X=$ alkyl) should produce large Δn and $\Delta \varepsilon$ values. Consequently, various amino analogues of the type 2 were synthesized and their

mesomorphic properties determined. Syntheses of the compounds with $X=\mathrm{O}_{2} \mathrm{~N}, R=R^{\prime}=\mathrm{H}[3-5] ; R=\mathrm{H}$; $R^{\prime}=\mathrm{Me}[5,9] ; R=R^{\prime}=\mathrm{Me}$, and $R=\mathrm{H}, R^{\prime}=\mathrm{C}_{6} \mathrm{H}_{15}$ have already been reported [3]. Transition temperatures were reported only for the last compound $\left(\mathrm{Cr} 127.5^{\circ} \mathrm{C}\right.$ $\mathrm{N} 146^{\circ} \mathrm{C}$ I). We repeated the preparation of some of these to determine their mesomorphic properties and to use in comparisons. Although diacetylenes in general are not stable to UV light, many of the applications for large birefringence liquid crystals are for the manipulation of infrared light. Hence, with appropriate optical shielding, these materials could be practical for these purposes.

2. Synthesis

The synthesis of these aminodiacetylenes was based on methods reported earlier for preparing various asymmetrical diacetylenes [1, 2, 5-7]. A copper-cataly sed coupling of the bromoacetylene $\mathbf{3}$ with the amino acetylene 4 readily produced the diacetylenes 2 (scheme 1). The

amino alkyl groups, R and R^{\prime}, can be incorporated into the amino acetylene $\mathbf{4}$ as was done in the synthesis of the diacetylenes 2 with $R=\mathrm{H}, R^{\prime}=\mathrm{C}_{4} \mathrm{H}_{9}\left(X=\mathrm{C}_{5} \mathrm{H}_{11}, \mathrm{~F}\right)$ and $\mathrm{C}_{5} \mathrm{H}_{11}, \mathrm{C}_{6} \mathrm{H}_{13} \quad\left(X=\mathrm{NO}_{2}\right)$, and $R=R^{\prime}=\mathrm{CH}_{3}$ ($X=\mathrm{C}_{5} \mathrm{H}_{11}$) or by alkylating the amino diacetylene 2 ($R=R^{\prime}=\mathrm{H}$, prepared from 3 and 4); this method was used also to prepare both the dimethyl and dibutylaminodiacetylene 5 and the butyl-methyl or ethyl analogues 6 .

A variety of methods has been used to prepare the bromoacetylenes 3 [1, 6, 7, 9-13]. Our approach (scheme 2) converted the aldehyde 7 to the dibromoolefin 8 which was then dehydrobrominated to the bromoacetylene 3. A major problem in the synthesis of the dibromo-olefin was to separate the product from the by-product triphenylphosphine oxide. We found that the best way to remove this was to filter the crude material once or twice through a short silica gel column. This also removed any unreacted aldehyde. Final purification was achieved by a more careful chromatography on silica gel. Vacuum distillation was also tried but GC indicated that the product was less pure than the chromatographed olefin. This distilled material could, however, be used to prepare the acetylene 3. Two solvent systems, t - BuOH and toluene were used for the conversion of the olefin $\mathbf{8}$ to the acetylene 3. Both gave comparable yields. Low yields of the bromoacetylene 3 with $X=\mathrm{F}$ appeared to be due to co-distillation or sublimation of this material with $t-\mathrm{BuOH}$ during its removal. Perhaps toluene would be a better solvent to use for preparing this analogue.

Many of the acetylene intermediates in this work seemed to be sensitive to light; this was also true of the iodide intermediates. Consequently, every effort was made to protect these materials from light. An attempt to distil the bromoacetylene led to decomposition, suggesting a sensitivity to heat as well.

The syntheses for two of the aminoacetylenes 4 ($R=R^{\prime}=\mathrm{H}$ or Me) were reported earlier [14-19]. In our work on the synthesis of alkylaminoazo dyes, alkylation of aniline with one equivalent of an alkyl bromide gave a mixture of aniline and both mono and disubstituted aniline which was difficult to separate [20]. Thus, we chose to use the trifluoroacetyl group for protection when only one N-alkyl substituent was needed. This protecting group is easy to add and remove [21,22]; the resulting amide can be alkylated, and it has been used to prepare the aminoacetylene $4\left(R=R^{\prime}=\mathrm{NH}_{2}\right)$ [23]. Before this work became known to us, we had already prepared the alkylated anilines $\mathbf{1 1}$ via the amides

Scheme 2.

Scheme 3.

9 and $\mathbf{1 0}$ (scheme 3) for use in preparing azo dyes. Iodination converted these anilines to the iodides 16, which then gave the amides 19. However, iodination never was complete, giving a mixture of amines that were difficult to separate. Starting with the iodoaniline 12 gave the same intermediate 19 in only two steps, making this the method of choice. The corresponding bromoaniline $\mathbf{1 4}$ was also tried. Both the halides 13 and $\mathbf{1 5}$ could be alkylated to the amides $\mathbf{1 8}$ and $\mathbf{1 9}$ but complete conversion was never achieved; longer reaction times did not improve the yields. The amides isolated could, however, be purified by chromatography.

Two methods were available to introduce the triple bond onto the benzene ring. Both involved using a protected acetylene, either with a $\mathrm{CMe}_{2} \mathrm{OH}[16,17]$ or a $\mathrm{SiMe}_{3}[14,15,16(a)]$ group. In one instance, removing the $\mathrm{CMe}_{2} \mathrm{OH}$ group reportedly led to decomposition, and better results were obtained by using the $\mathrm{SiMe}_{3}[16(b)]$ group. We were able to prepare the aminoacetylenes 4 using either group but came to prefer $\mathrm{CMe}_{2} \mathrm{OH}$ (scheme 3). Both the iodide 19 and the bromide 18 gave high yields in this reaction. Using bromoaniline $\mathbf{1 4}$ has the advantages that it is less expensive and not light sensitive. Chloroaniline was also tried; the resulting amide analogous to 15 was synthesized but poor results were obtained in the coupling reaction. Hydrolysis of the acetylene 21 gave the aminoacetylenes $\mathbf{4}\left(R^{\prime}=\mathrm{H}\right)$ in good yields. Since the bromodimethylan iline 17 is commercially available, it was converted to the aminoacetylene 4 ($R=R^{\prime}=\mathrm{Me}$) via the intermediate 20.

3. Quantum chemical calculations

Quantum chemistry calculations were performed on several of these molecules, using the GAMESS general atomic and molecular electronic structure system. The structures of the various molecules were optimized using the semi-empirical basis set AM1, usually followed
by an $a b$ initio basis set such as 421 G or $631 \mathrm{G}^{*}$. The molecular dipoles were then calculated using the $a b$ initio basis, 631G*. The molecular polarizabilities were calculated by applying a finite static field, using the same 631G* ab initio basis set, and comparing the results for the dipole moments with and without the field. This should yield a good estimate for the polarizability at frequencies high compared with the rate at which the molecules re-orient but low in comparison with the electronic excitations of the molecules. Thus these are a conservative estimate for the polarizabilities in the infrared. All calculations where done using simple restricted Hartree-Fock (RHF) calculations. The effect of this approximation on the results is expected to be small (but is hard to assess immediately). All non-zero components of the polarizability were calculated, and are reported. In addition, we report the difference between the polarizability along the long axis of the molecule and average of the polarizabilities perpendicular thereto. This latter parameter is expected to be the most important in determining the birefringence.

It is known that there is relatively little energy involved in rotating the phenyl rings attached to a diacetylene relative to each other. However, we report here only on calculations in which the two phenyl rings were parallel to each other. Presumably, this overstates somewhat the molecular polarizability anisotropy. Similarly, the nitro and dialkylamine groups were constrained to be in the same plane as the phenyl rings to which they are attached. This will again tend to overstate the molecular polarizability anisotropy and molecular dipole. Finally, no molecule with $X=$ alkyl was examined, $X=\mathrm{H}$ was used instead. As $X=$ alkyl is a better donor than $X=\mathrm{H}$, this is again likely to overstate the molecular polarizability anisotropy and molecular dipole. All of these approximations allow some simplifications in the calculations as they allow them to be made with higher symmetry, $C_{2 v}$ or higher. However, we believe that all of these effects are relatively small and that our results reasonably reflect the trends in these series.

The molecular dipoles, molecular polarizabilities and polarizability anisotropy from these calculations are given in table 1. In the calculations, the geometries were all constrained to have at least $C_{2 v}$ symmetry so that the dipole is along the long axis of the molecule and the polarizability tensor is diagonal when the coordinates are chosen to be along the special axes of this group. The z direction is the long axis of the molecule, the x direction is perpendicular thereto but in the plane of the phenyl rings, the y direction is perpendicular to the phenyl rings. It is expected that the long axis of the molecule should align primarily along the director and that the degree of order along other molecular axes should be relatively small. Hence the birefringence

Table 1. Calculated dipoles, components of the electronic polarizability tensor, and the most relevant electronic polarizability anisotropy for compounds $\mathbf{1}$.

X	Y	Dipole /Debye	$\alpha_{z z}$	$\alpha_{x x}$	$\alpha_{y y}$	$\Delta \alpha$
H	H	0	0.8819	0.3554	0.1284	0.6398
H	NMe_{2}	3.060	1.0768	0.4104	0.1822	0.7905
F	NMe_{2}	5.1161	1.0764	0.4080	0.1848	0.7900
NO_{2}	NH_{2}	9.9354	1.1116	0.3906	0.0988	0.8669

is controlled primarily by $\Delta \alpha=\alpha_{z z}^{-1 / 2}\left(\alpha_{x x}+\alpha_{y y}\right)$. The molecular dipoles in this table are given in Debye and the polarizabilities in 10^{3} Debye/au.
The dielectric anisotropy is difficult to predict from the dipole moment of a material, particularly if the dipole moment is large. This is because inter-molecular interactions between the molecules significantly affect the dielectric anisotropy. However, if the dipole moment along the long axis of the molecule is more than about 2 or 3 Debye (or about this much larger than the dipole(s) transverse to the long axis of the molecule), then the dielectric anisotropy is usually positive and acceptably larger. Thus it would seem that all these molecules have significant positive dielectric anisotropies. Determination of the $\Delta \varepsilon$ and Δn values are in progress and will be reported later.
We also see that the addition of the strong amine donor appreciably increases the optical polarizability and the polarizability anisotropy. Using the strong π acceptor $X=\mathrm{NO}_{2}$ further increases the polarization anisotropy. However, changing $X=\mathrm{H}$ to $X=\mathrm{F}$, which is a strong σ acceptor but moderate π donor has surprisingly little effect on the polarizability. A larger change would be expected on replacing alkyl (a π donor) by F. In any case, $X=\mathrm{F}$ does very appreciably increase the size of the electric dipole, which in turn would be expected to increase the dielectric anisotropy.

Given these calculations, it is expected that the amines should all have appreciably better dielectric anisotropies than the diacetylene 1 with $X=Y=\mathrm{H}$, roughly in the order $X=$ alkyl, $\mathrm{F}, \mathrm{NO}_{2}$. It is also expected that the amines should have somewhat larger birefringences. This effect is marginal, however, except for $X=\mathrm{NO}_{2}$ and might be overwhelmed by changes in the order parameter, which also effects the birefringence.

4. Mesomorphic properties

Transition temperature $\left({ }^{\circ} \mathrm{C}\right)$ for the aminodiacetylenes prepared, as determined by hot stage polarizing micro-
scopy, along with some enthalpy values obtained from DSC scans are presented in table 2. There seems to be little consistency in the effect of the substituents X, R, and R^{\prime} on mesomorphic properties. When $X=\mathrm{C}_{3}$ [$\mathrm{C}_{3}=\mathrm{C}_{3} \mathrm{H}_{7}$, etc], and $R=R^{\prime}=\mathrm{H}$, a monotropic nematic phase was observed but no mesophases occurred when $X=\mathrm{C}_{5}$ or NO_{2}. However, when $R=R^{\prime}=\mathrm{Me}$ and $X=\mathrm{C}_{3}, \mathrm{C}_{5}$ the opposite is true, with $X=\mathrm{C}_{5}$ having an enantiotropic nematic phase and $X=\mathrm{C}_{3}$ showing no mesophase. Longer chain lengths for all the substituents in any combination produced much lower melting temperatures but no nematic phases. On the other hand, when $R=\mathrm{H}$ with $R^{\prime}=\mathrm{C}_{4}-\mathrm{C}_{6}\left(X=\mathrm{C}_{5}, \mathrm{~F}, \mathrm{NO}_{2}\right)$, melting temperatures were high and nematic ranges were wider $\left(18.5-44.8^{\circ} \mathrm{C}\right)$ making these the best mesogens of the entire group. Surprisingly, the combination of $R=\mathrm{CH}_{3}$, $R^{\prime}=\mathrm{Bu}$ and $X=\mathrm{F}$ lowers the melting temperature $60^{\circ} \mathrm{C}$ but also destroys all mesophases, despite the fact that the isotropic liquid can be supercooled by an additional $60^{\circ} \mathrm{C}$. Enthalpy of melting values for all the mesogens were, however, too high for them to be useful in eutectic mixtures. Still, it is possible that a disubstituted fluoro analogue (expected to have an even lower melting temperature, an appreciable dipole moment and a low heat of melting) could be useful in mixtures despite having a low tendency to mesophase formation.

5. UV-Vis absorption

The UV-Vis spectra were obtained in solution but the solvent curve was subtracted to give only spectra of the diacetylenes. Some typical curves are shown in figure 1. We did not carefully measure the path length or concentration so these curves are in arbitrary units and only the shapes should be compared. As can be readily seen, the amine, the alkyl amine and most strongly the dialkylated amines shift the lowest lying absorption to longer wavelengths. This is expected, as going from amine to alkylamine to dialkylamine results in an increasingly strong donor para to the electron-accepting diacetylene. Also, note that the absorptions in figures $1(a-c)$ extend slightly into the visible (in $1(d)$ when $X=\mathrm{NO}_{2}$ there is a major absorption in the visible). It is difficult to know if this is a result of trace impurities (e.g. oxidized amines) in the sample, or if it is an intrinsic property of these materials.
It is also expected, on the basis of 'ordinary chemical reasoning', that the transition dipole matrix element from the ground state to this lowest lying state is along the long axis of the molecule. The smaller the energy difference between the ground state and excited state, the higher the expected contribution of this state to the polarizability (provided the transition matrix element does not change dramatically, as systematized e.g. by its sum-over-states formula) [24]. It is expected that this

Table 2. Transition temperatures $\left({ }^{\circ} \mathrm{C}\right)$ for compounds $\mathbf{2}$.

[^2]should result in a larger electronic polarizability anisotropy for the molecule. With similar order parameters, this would translate into an increased birefringence. Relatively little change in the absorptions are seen upon addition of a fluorine para to the acetylene, while rather significant changes are seen on addition of a para-nitro group. This suggests that such a para-fluorine atom does not increase the molecular polarizability anisotropy, but that the nitro group does. This is consistent with the results of the quantum chemical calculations. Unfortunately, the nitro group also results in unacceptably high melting temperatures for the liquid crystal phases.

6. Conclusions

A variety of mono- and di-alkylated aminodiphenyldiacetylenes were prepared. Some of these compounds had enantiotropic nematic phases but usually with melting temperatures above $100^{\circ} \mathrm{C}$. A few had much lower melting temperatures but showed either no mesophases or only monotropic nematic phases.

7. Experimental

All temperatures are given in ${ }^{\circ} \mathrm{C}$. Commercially available starting materials were used without purification unless otherwise indicated. All reactions using iodides
were protected from light due to the light instability of these materials. Acetylenes and diacetylenes were stored at 5° when not in use. Anhydrous reactions were run in flame- or oven-dried glassware using solvents dried over Linde 4A molecular sieves. Organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ or MgSO_{4}. The NaH used was a 60% suspension in mineral oil, and was usually washed with hexane immediately before addition to the reaction mixture. The amount used is that for the oil suspension.

TLC data were obtained using Anal-Tech silica gel GHLF Uniplates with UV light and I_{2} as the detectors. Flash chromatograph y and silica gel filtrations were done using Mallinckrodt silica gel (230-400 mesh). Capillary GC analysis was obtained using a Hewlett-Packard 5890 instrument equipped with a HP3395 Integrator, a FID detector and a Hewlett Packard 5 m methylsilicone gum column. All gradient GCs were run at $20^{\circ} \mathrm{min}^{-1}$. Melting points were determined using a Hoover-Thomas melting point apparatus and are corrected. These are not reported for compounds for which transition temperatures are given in table 1.

A Nicolet Magna FTIR spectrophotometer was used to record IR spectra in cm^{-1} using NaCl plates. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were determined in CDCl_{3} with TMS as the internal standard, using a Varian Gemini-200

Figure 1. UV-Vis absorption spectra for compounds 2. (a) $X=\mathrm{C}_{5} \mathrm{H}_{11}, R=R^{\prime}=\mathrm{H}$; (b) $X=\mathrm{C}_{5} \mathrm{H}_{11}, R=\mathrm{CH}_{3}, R^{\prime}=\mathrm{C}_{4} \mathrm{H}_{9}$; (c) $X=\mathrm{F}, R=\mathrm{CH}_{3}, R^{\prime}=\mathrm{C}_{4} \mathrm{H}_{9} ;$ (d) $X=\mathrm{O}_{2} \mathrm{~N}, R=\mathrm{H}, R=\mathrm{C}_{4} \mathrm{H}_{9}$.
spectrometer equipped with a VXR-400 data station at 200 and 50 MHz respectively. Chemical shifts are given in δ units and coupling constants in $\mathrm{Hz} .{ }^{13} \mathrm{C}$ NMR chemical shifts were compared with those values calculated using a softshell ${ }^{13} \mathrm{C}$ NMR Module. UV solution spectra were obtained in a 1 cm cell using a PerkinElmer lambda 4B instrument. The solvent curve was subtracted from all spectra.

Transition temperatures $\left({ }^{\circ} \mathrm{C}\right)$ were determined using a Leitz Laborlux 12 POL polarizing microscope fitted with a modified and calibrated mettler FP-2 heating stage at a heating rate of $2^{\circ} \mathrm{C} \mathrm{min}^{-1}$. Crystallization temperatures were obtained by cooling the melt at $2^{\circ} \mathrm{min}^{-1}$ until crystals were formed, to ensure that all mesophases had been observed before this temperature. These crystals were reheated to obtain the melting temperatures and to confirm that these were not mesophases. DSC scans were run using a Perkin-Elmer DSC7 equipped with a TAC 7/PC instrument controller at a rate of $5^{\circ} \mathrm{min}^{-1}$; indium was used for calibration.

7.1. 1-(2,2-Dibromoethenyl)-4-alkylbenzene $\mathbf{8}$

Method $1\left(X=C_{5} H_{11}\right)$. A solution of $\mathrm{CBr}_{4}(131.7 \mathrm{~g}$, 0.40 mol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise over a 2 h period to a stirred suspension of $\mathrm{PPh}_{3}(114.6 \mathrm{~g}, 0.44 \mathrm{~mol})$ and Zn dust $(26.0 \mathrm{~g}, 0.40 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(450 \mathrm{ml})$ at 0° under N_{2}. The reaction mixture was stirred at r.t. for 24 h and then cooled to 0°. A solution of the aldehyde 7 with $X=\mathrm{C}_{5} \mathrm{H}_{11}(35.0 \mathrm{~g}, 0.20 \mathrm{ml})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{ml})$ was added dropwise to this pink mixture and stirring was continued for 3.5 h . The reaction mixture was filtered twice through silica gel (c. 250 g) and the silica gel washed thoroughly with $1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane; the solvent was removed from the filtrate in vacuo. The remaining liquid could be purified by distillation as described here or by flash chromatography as described below in method 2. Distillation at $135-140^{\circ}(0.6 \mathrm{~mm} \mathrm{Hg})$ gave $61.1 \mathrm{~g}(92.7 \%)$ of the dibromoolefin $\mathbf{8}\left(X=\mathrm{C}_{5} \mathrm{H}_{11}\right)$ as a pale yellow liquid. TLC $\left(10 \%\right.$ hexane $\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), R_{f}=0.71$; GC (100-250 $)$ major peaks at $t_{\mathrm{R}}=5.76(94.86 \%$, product), 5.51 (1.01%), 6.71 (1.82%) and numerous
minor peaks; IR (film) 1616 with sh (med, $\mathrm{ArC}=\mathrm{CBr}_{2}$) and 1514 (med, Ar); ${ }^{1} \mathrm{H}$ NMR 7.50 (d, 2, $J=7.86, \mathrm{ArH}$ ortho to $\mathrm{C}=\mathrm{C}$), 7.45 ($\mathrm{s}, 1, \mathrm{C}=\mathrm{CH}$), 7.18 (d, $2, J=8.22$, ArH ortho to C_{5}), $2.60\left(\mathrm{t}, 2, J=7.69, \mathrm{Ar}-\mathrm{CH}_{2}\right), 1.58$ (quint, $2, J=7.78, \beta-\mathrm{CH}_{2}$), $1.36-1.29\left(\mathrm{~m}, 4,2 \mathrm{CH}_{2}\right)$ and $0.90\left(\mathrm{t}, 3, J=6.60, \mathrm{CH}_{3}\right)$.

Method $2\left(X=C_{3} H_{7}\right)$. The reaction mixture obtained as in method 1 was filtered twice through silica gel (c. 250 g) using first $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then $1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane as the eluting solvents until TLC indicated that no additional product was eluted. The second filtrate was allowed to evaporate to near but not complete dryness and hexane ($10 \times$ product volume) added. The precipitated solid was removed by filtration and washed thoroughly with hexane. Removal of the solvent from the filtrate in vacuo gave a material which was flash chromatographed on silica gel using hexane to give the purified dibromoolefin $8\left(X=\mathrm{C}_{3} \mathrm{H}_{7}\right)$ as a pale yellow liquid in $68.4 \mathrm{~g}(99.9 \%)$ yield. TLC (hexane) $R_{f}=0.58$; GC $t_{\mathrm{R}}=3.88\left(100 \%, 100-250^{\circ}\right) ;{ }^{1} \mathrm{H}$ NMR aliph region: $2.57\left(\mathrm{t}, 2, J=7.65, \mathrm{ArCH}_{2}\right.$), 1.63 (quint, $2, J=7.44$, $\beta-\mathrm{CH}_{2}$) and 0.93 ($\mathrm{t}, 3, J=7.33, \mathrm{CH}_{3}$).
$X=F$. Yellow liquid, purified yield $=95.6 \%$. GC $t_{\mathrm{R}}=4.10 \quad\left(100 \%, \quad 50-250^{\circ}\right) ;$ IR (film) 1603, 1584 (str, $\mathrm{ArC}=\mathrm{CBr}_{2}$) and 1507 (str, Ar); ${ }^{1} \mathrm{H}$ NMR $\delta 7.54$ (dd, $2, J=9.08,5.45$, ArH ortho to $\mathrm{C}=\mathrm{C}$), 7.46 (s, 1, CH) and $7.08(\mathrm{t}, 2, J=8.61$, ArH ortho to F).
$X=\mathrm{NO}_{2}$. The starting aldehyde did not dissolve easily in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ so THF (c. 50% of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ volume) was added. The crude product was purified directly by flash chromatograph y through silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ followed by recrystallization from abs. EtOH to give $63.1 \mathrm{~g}(88.8 \%)$ of the dibromoolefin $3\left(X=\mathrm{NO}_{2}\right)$ as a yellow solid. TLC (1:1 $\quad \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane $) \quad R_{f}=0.65$; m.p. 104-105; IR (Nujol) 1603 (med), 1587 (med) and 1518 (str, $\mathrm{ArC}=\mathrm{CBr}_{2}$); ${ }^{1} \mathrm{H}$ NMR 8.24 (d, 2, $J=8.87, \mathrm{ArH}$ ortho to NO_{2}), 7.71 (d, 2, $J=9.12$, ArH ortho to CH) and 7.56 (s, 1, CH).

7.2. 1-(Bromoethynyl-4-pentylbenzene 3 ($X=C_{5} H_{11}$)

Method 1. To a stirred solution of the dibromoolefin $8\left(X=\mathrm{C}_{5} \mathrm{H}_{11}, 3.00 \mathrm{~g}, 9.03 \mathrm{mmol}\right)$ in toluene $(75 \mathrm{ml})$ at r.t. under anhydrous conditions, was added in small portions t-BuOK ($1.02 \mathrm{~g}, 9.03 \mathrm{mmol}$). This mixture was heated under reflux for 6 h , stirred at r.t. for 17 h and then quenched by the addition of $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$. Toluene was removed in vacuo and the remaining material dissolved in $\mathrm{H}_{2} \mathrm{O}(75 \mathrm{ml})$ and extracted with hexane $(2 \times 150 \mathrm{ml})$. The organic layer was separated, dried, filtered, and the solvent removed from the filtrate in vacuo to give the crude product. Purification of this material by flash chromatography on silica gel using hexane gave the purified bromoacetylene $3\left(X=\mathrm{C}_{5} \mathrm{H}_{11}\right)$ as a pale yellow liquid ($2.0 \mathrm{~g}, 90.3 \%$). TLC (hexane)
$R_{f}=0.60$; IR (film) 2208 ($\mathrm{wk} \mathrm{C} \equiv \mathrm{C}$) 1607 (wk, Ar) and 1517 (str, ArH); ${ }^{1} \mathrm{H}$ NMR 7.37 (d, 2, $J=8.22$, ArH ortho to $\mathrm{C} \equiv \mathrm{C}$), 7.12 (d, 2, $J=8.10$, ArH ortho to alkyl), 2.59 ($\mathrm{t}, 2, J=7.70, \mathrm{ArCH}_{2}$), 1.59 (quint, $2, J=7.55, \beta-\mathrm{CH}_{2}$), $1.33-1.24\left(\mathrm{~m}, 4,2 \mathrm{CH}_{2}\right)$ and $0.88\left(\mathrm{t}, 3, J=6.78, \mathrm{CH}_{3}\right)$.

Method 2. To a stirred solution of the dibromoolefin $8\left(X=\mathrm{C}_{5} \mathrm{H}_{11}, 25.4 \mathrm{~g}, 76.7 \mathrm{mmol}\right)$ in t - BuOH at r.t. under N_{2}, was added in small portions t - $\mathrm{BuOK}(8.61 \mathrm{~g}$, 76.2 mmol). This mixture was heated under reflux for 4.25 h , cooled to r.t., $\mathrm{H}_{2} \mathrm{O}(125 \mathrm{ml})$ added and the solvents removed in vacuo. The remaining material was dissolved in hexane, washed with $\mathrm{H}_{2} \mathrm{O}$, dried, filtered, and the filtrate evaporated to give 20.1 g of the crude product. TLC (hexane) showed 3 spots with $R_{f}=0.00$, 0.55 , and 0.65 . Purification of this material by flash chromatography through a $5^{\prime \prime}$ column of silica gel using hexane gave the bromoacetylene 3 ($X=\mathrm{C}_{5} \mathrm{H}_{11}, 2.05 \mathrm{~g}$, 90.3%). TLC (hexane) $R_{f}=0.60^{\circ}$; GC ($100-220^{\circ}$) $t_{\mathrm{R}}=2.75(2.85 \%), 3.21(0.82 \%)$ and $3.31(96.34 \%$, bromoacetylene).

The following analogues of $\mathbf{3}$ were prepared using the methods indicated.
$X=C_{3} H_{7}$. Method $1 \sim 92.8 \%$; method $2 \sim 89.5 \%$.
$X=F$. Method 2, yield 57.0-77.6\%, colourless solid with m.p. 42-43 . TLC (hexane) $R_{f}=0.47$; GC $\left(100-250^{\circ}\right) t_{\mathrm{R}}=0.51(0.5 \%)$ and 0.78 (99.5% product); IR (Nujol) 2200 (wk C=C), 1605 (med with sh, Ar) and 1512 (str, Ar); ${ }^{1} \mathrm{H}$ NMR 7.43 (dd, 2, $J=8.45,5.48$, 2, ArH ortho to $\mathrm{C} \equiv \mathrm{C}$), 7.01 ($\mathrm{t}, 2, J=8.49$, ArH ortho to F). This material seemed to azeotrope with t - BuOH making it difficult to obtain a good yield. Thus, method 1 might be better for preparing this analogue.
$X=\mathrm{NO}_{2}$. Method 2, the reaction time was 8 h . The reaction mixture was cooled to r.t., $\mathrm{H}_{2} \mathrm{O}$ added and the mixture extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer yielded a solid which was recrystallized from $\mathrm{CH}_{3} \mathrm{CN}$ to give $38.2 \mathrm{~g}(92.5 \%)$ of the bromoacetylene 3 ($X=\mathrm{NO}_{2}$), m.p. 169.1-173.1 ${ }^{\circ}$ dec (lit. [12] 173-175 ${ }^{\circ}$); TLC $\left(\mathrm{CHCl}_{3}\right) R_{f}=0.63$; IR (Nujol) 2195 (wk, $\mathrm{C} \equiv \mathrm{C}$), 1594 and 1510 (str, Ar); ${ }^{1} \mathrm{H}$ NMR 8.19 (d, 2, $J=8.99$, ArH ortho to NO_{2}) and $7.60(\mathrm{~d}, 2, J=8.96$, ArH ortho to $\mathrm{C} \equiv \mathrm{C})$.

7.3. 2,2,2-Trifluoro- N-phenylacetamide 9

To the stirred aniline $(10.0 \mathrm{~g}, 0.11 \mathrm{~mol})$ cooled in an ice bath was added dropwise a mixture of $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$ $(80 \mathrm{~g}, 0.38 \mathrm{~mol})$ and $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(44 \mathrm{~g}, 0.38 \mathrm{~mole})$. The reaction mixture was heated under reflux for 24 h , cooled to r.t. and $\mathrm{Et}_{2} \mathrm{O}$ added. This mixture was washed thoroughly with $\mathrm{H}_{2} \mathrm{O}$, dried, filtered and the solvent evaporated from the filtrate to give $18.2 \mathrm{~g}(89.5 \%)$ of the crude amide. This material was purified by flash chromatograph y on silica gel using 1:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane to give the amide 9 , yield $17.5 \mathrm{~g}(86.0 \%)$, m.p. $88.5-89.5^{\circ}$
(lit. [25] 88.5-90 ${ }^{\circ}$). TLC $\left(\mathrm{CHCl}_{3}\right), R_{f}=0.44$; IR (Nujol) 3335 (str NH), 1709 (str amide) and 1607 (str, Ar); ${ }^{1} \mathrm{H}$ NMR 11.26 (s, 1, NH), 7.68 (d, 2, $J=8.59$, ArH ortho to N), 7.42 ($\mathrm{t}, 2, J=7.70$, ArH meta to N) and $7.23(\mathrm{t}, 1, J=7.37$, ArH para to N).

7.4. 2,2,2-Trifluoro- N-pentyl- N-phenylacetamid e 10 ($R=C_{5} H_{11}$)

To a stirred suspension of $\mathrm{NaH}(1.55 \mathrm{~g})$ in anhyd. DMF (dried 17 h over 4A molecular sieves) at r.t under N_{2}, was added dropwise a solution of the amide 9 $(7.00 \mathrm{~g}, 37.0 \mathrm{mmol})$ in DMF $(40 \mathrm{ml})$ over a 15 min period. Stirring was continued for 40 h and then a solution of n-pentyl iodide ($8.06 \mathrm{~g}, 40.7 \mathrm{mmol}$) in DMF (25 ml) was added over one min. After stirring at r.t. for 70 h , the solvent was removed in vacuo. The remaining material was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ and the solution washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 200 \mathrm{ml})$, dried and filtered. The solvent was removed from the filtrate in vacuo to give 8.45 g (87.7%) of the crude product. TLC of this material in CHCl_{3} showed 3 spots with $R_{f}=0.39,0.58$ and 0.78 . This material was flash chromatographed on silica gel. Elution with increasing amounts of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in hexane gave the following fractions: TLC $\left(\mathrm{CHCl}_{3}\right) R_{f}=0.81$ (hexane, trace amount), $R_{f}=0.59\left(25 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 5.53 \mathrm{~g}$ liquid; $R_{f}=0.37$ ($95 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$), 0.86 solid with m.p. 83-84 (starting amide) and $R_{f}=0.80,0.60\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 1.56 \mathrm{~g}$ liquid product plus $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{I}$. The second fraction was found to be the desired alkylated amide $10\left(R=\mathrm{C}_{5} \mathrm{H}_{11}\right)$, 57.4% : IR (film) 1703 (str, amide) and 1613 (med Ar); ${ }^{1} \mathrm{H}$ NMR 7.46-7.39 (m, 3, meta and para ArH), 7.27 (d, 2, $J=8.02$, ArH ortho to N), 3.72 ($\mathrm{t}, 2, J=7.65$, NCH_{2}), $1.65-1.50\left(\mathrm{~m}, 2, \mathrm{~N} \beta-\mathrm{CH}_{2}\right), 1.36-1.21$ (m, 4, 2 CH_{2}) and $0.88\left(\mathrm{t}, 3, J=6.70, \mathrm{CH}_{3}\right)$. The third fraction was rechromatographed on silica gel using 1:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane to give a liquid (791 mg) shown to be the alkylated aniline $\mathbf{1 1}\left(R=\mathrm{C}_{5} \mathrm{H}_{11}\right)$. TLC $\left(\mathrm{CHCl}_{3}\right) R_{f}=0.61$; IR (film) 2423 (wk, NH) and 1608 (str, ArH); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) 7.17$ (t, 2, $J=7.94$, ArH meta to NHR), 6.68 ($\mathrm{t}, 1, J=7.31$, ArH para to NHR), 6.60 (d, $2, J=7.57$, ArH ortho to NHR), 3.60 (br s, 1, NH) 3.10 ($\mathrm{t}, 2$, $J=7.02, \mathrm{NCH}_{2}$) and 1.61 (quint, $2, J=6.66, \mathrm{~N} \beta-\mathrm{CH}_{2}$), $1.43-1.26\left(\mathrm{~m}, 6,3 \mathrm{CH}_{2}\right)$ and $0.90\left(\mathrm{t}, 3, J=6.55,3 \mathrm{CH}_{3}\right)$. This aniline represents 13.0% of the amide $\mathbf{1 0}$, giving a corrected amide yield of 70.4%.
The amide 10 with $R=\mathrm{C}_{6} \mathrm{H}_{13}$ was prepared in the same manner in 94.0% yield but was used without purification to obtain the aniline $\mathbf{1 1}$.

7.5. N-Hexylbenzenamine $11\left(R=C_{6} H_{13}\right)$

A mixture of the amide $\mathbf{1 0}\left(R=\mathrm{C}_{6} \mathrm{H}_{13}, 22.5 \mathrm{~g}\right.$, 0.08 mol) and $\mathrm{NaOH}(16.5 \mathrm{~g}, 0.41 \mathrm{~mol})$ in $\mathrm{EtOH}(50 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{ml})$ was heated under reflux for 20 h . The pH of the cooled (r.t.) reaction mixture was adjusted to
c. 6 with 3 M aq HCl . Water (200 ml) was added and the mixture extracted with $\mathrm{Et}_{2} \mathrm{O}(300 \mathrm{ml})$. The $\mathrm{Et}_{2} \mathrm{O}$ layer was washed with $\mathrm{H}_{2} \mathrm{O}(4 \times 100 \mathrm{ml})$, dried, filtered, and the solvent removed from the filtrate to give 14.0 g , 95.5% of the crude product. This material was purified by flash chromatography on silica gel using increasing concentrations of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in hexane. A $1: 1$ mixture gave $10.9 \mathrm{~g}(74.5 \%)$ of the purified aniline as a colourless liquid $11\left(R=\mathrm{C}_{6} \mathrm{H}_{13}\right)$. TLC $\left(\mathrm{CHCl}_{3}\right) \quad R_{f}=0.65$; IR (film) 3411 (med, NH) and 1607 (str, Ar); ${ }^{1} \mathrm{H}$ NMR 7.17 ($\mathrm{t}, 2, J=7.92$, ArH meta to N), $6.69(\mathrm{t}, 1, J=7.33$, ArH para to N), 6.61 (d, 2, $J=7.65$, ArH ortho to N), 3.60 ($\mathrm{s}, 1, \mathrm{NH}$), $3.10\left(\mathrm{t}, 2, J=7.00, \mathrm{NCH}_{2}\right.$), 1.02 (quint, 2, $\left.J=7.33, \mathrm{~N} \beta-\mathrm{CH}_{2}\right), 1.44-1.28\left(\mathrm{~m}, 6,3 \mathrm{CH}_{2}\right)$ and 0.90 $\left(\mathrm{t}, 3, J=6.37, \mathrm{CH}_{3}\right)$.
7.6. N-(Hexyl)-4-iodobenzenamine $16\left(R=C_{6} H_{13}\right)$

To a stirred mixture of the aniline $11\left(R=\mathrm{C}_{6} \mathrm{H}_{13}\right.$, $500 \mathrm{mg}, 2.82 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(360 \mathrm{mg}, 4.28 \mathrm{mmol})$ in 80% aq. EtOH at r.t. in the dark, was added I_{2} $(1.35 \mathrm{~g}, 8.44 \mathrm{mmol})$ in 150 mg portions every 10 min . The reaction mixture was stirred for 1 h , poured into a solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \mathrm{~g})$ in $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with more of the $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution followed by $\mathrm{H}_{2} \mathrm{O}$; it was then dried, and filtered through silica gel, washing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$. The solvent was evaporated from the filtrate to give 780 mg (90.7%) of the crude liquid iodo compound $11\left(R=\mathrm{C}_{6} \mathrm{H}_{13}\right)$. TLC $\left(\mathrm{CHCl}_{3}\right) R_{f}=0.59$, 0.74 and 0.86 ; GC $\left(50-200^{\circ}\right) T_{\mathrm{R}}=6.25(6.0 \%$, starting aniline) and 8.72 (94.0%, product); IR (film) 3424 (med, NH) and 1607 (str, Ar); ${ }^{1} \mathrm{H}$ NMR 7.40 (d, 2, $J=8.79$, ArH ortho to I), 6.38 (d, 2, $J=8.79$, ArH ortho to N), $3.06\left(\mathrm{t}, 2, J=7.00, \mathrm{NCH}_{2}\right.$), 1.59 (quint, $2, J \sim 6.27, \mathrm{~N}$ $\left.\beta-\mathrm{CH}_{2}\right), 1.41-1.27\left(\mathrm{~m}, 6,3 \mathrm{CH}_{2}\right)$ and $0.90(\mathrm{t}, 3, J=6.41$, CH_{3}). This material was used without further purification.

7.7. 2,2,2-Trifluoro-N-(4-iodophenyl)acetamide 13

This compound was prepared in the same manner as described in [23], our characterization data agreeing with that previously reported.

7.8. 2,2,2,-Trifluoro-N-(4-bromophenyl)acetamide 15

This compound was prepared from 4-bromoaniline in the same manner as the iodo analogue 13 in a 99.5% yield, m.p. 121-123 ${ }^{\circ}$. IR (Nujol) 3407 (med, NH), 1704 ($\operatorname{str} \mathrm{C}=0$) and 1597 (str, Ar); ${ }^{1} \mathrm{H}$ NMR 8.02 (br s, 1, NH), 7.52 (d, 2, $J=9.68$, ArH ortho to Br) and 7.49 (d, 2, $J=9.63$, ArH ortho to N).

7.9. 2,2,2-Trifluoro- N-(4-chloropheny l) acetamide

This compound was prepared from 4-chloroaniline in the same manner as the iodo analogue $\mathbf{1 3}$ in a 98.8%
yield, m.p. $122.8-126.3^{\circ} .{ }^{1} \mathrm{H}$ NMR 8.06 (br s, 1, NH), 7.53 (d, 2, $J=8.95$, ArH ortho to N) and 7.36 (d, 2, $J=8.95$, ArH ortho to Cl).

7.10. 2,2,2-Trifluoro-N-alkyl-N-
 (4-iodophenyl)acetamide 19

Method 1. $R=C_{6} H_{13}$. To a stirred solution of the iodoaniline $\mathbf{1 6}(780 \mathrm{mg}, 2.57 \mathrm{mmol})$ in $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(1.0 \mathrm{ml})$ in an ice bath was added quickly $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}(2.70 \mathrm{~g}$, 12.8 mmol). This mixture was warmed to $c .50^{\circ}$, stirred for 15 min , poured into $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{ml})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 50 \mathrm{ml})$, dried, filtered, and the solvent removed from the filtrate in vacuo to give $910 \mathrm{mg}(88.3 \%)$ of the product $19\left(R=\mathrm{C}_{6} \mathrm{H}_{13}\right)$ as a liquid. TLC $\left(\mathrm{CHCl}_{3}\right)$ $R_{f}=0.05 ; \mathrm{GC}\left(50-200^{\circ}\right) t_{\mathrm{R}}=8.41$ (99.6% product) and 8.72 (0.4%) starting aniline; ${ }^{1} \mathrm{H}$ NMR showed trace amounts of impurities at $7.2-7.5$. This material was used without further purification.

Method $2\left(R=C_{4} H_{9}\right)$. To a stirred suspension of NaH ($800 \mathrm{mg}, 20.0 \mathrm{mmol}$) in DMF (20 ml) at r.t., using anhydrous conditions, was added dropwise a solution of the iodoamide $13(6.0 \mathrm{~g}, 19.1 \mathrm{mmol})$ in DMF (10 ml). The reaction mixture was stirred for 3.0 h and then n-butyl iodide ($3.86 \mathrm{~g}, 21.0 \mathrm{mmol}$) was added dropwise. Stirring was continued at 60° for 72 h and the mixture was then cooled to r.t., diluted with $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{ml})$ and washed with $\mathrm{H}_{2} \mathrm{O}(5 \times 30 \mathrm{ml})$. The organic layer was dried, filtered, and the solvent removed from the filtrate in vacuo to give the crude product. TLC $\left(\mathrm{CHCl}_{3}\right)$ showed 3 spots with $R_{f}=0.60,0.57$ and 0.43 . Purification of this material by flash chromatograph y using $1: 1$ hexane in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with increasing amounts of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave 3.44 g (48.6%) of the amide $19\left(R=\mathrm{C}_{4} \mathrm{H}_{9}\right)$. IR (film) 1704 (sh, amide) and ~ 1600 (wk Ar); ${ }^{1} \mathrm{H}$ NMR 7.77 (d, 2, $J=8.67$, ArH ortho to I), 6.96 (d, $2, J=8.14$, ArH ortho to N), 3.70 (t, 2, $J=7.50, \mathrm{NCH}_{2}$), 1.53 (quint, 2, $J=7.78$, $\mathrm{N} \beta-\mathrm{CH}_{2}$), 1.32 (sext, $2, J \sim 6.68, \mathrm{~N} \gamma-\mathrm{CH}_{2}$) and 0.91 ($\mathrm{t}, 3, J=7.14, \mathrm{CH}_{3}$) ${ }^{13} \mathrm{C}$ NMR 139.0, 130.5, 119.0, 113.5, $94.5,51.9,29.5,20.0$ and 19.4.
The $R=\mathrm{C}_{5}$ homologue was also prepared using this method, purified yield $=75.4 \%$.

7.11. 2,2,2-Trifluoro- N-(bromophenyl)-N-butylacetamide $18\left(R=C_{4} H_{9}\right)$

This compound was prepared by alkylating the bromoamide 15 using the same procedure as used for the alkylation of the iodoaniline $\mathbf{1 3}$ (method 2$)$ except that the reaction mixture was stirred at 50° for 24 h . Yield after chromatograph $y=59.3 \%$, (22.8% of $\mathbf{1 5}$ was recovered). ${ }^{1} \mathrm{H}$ NMR 7.57 (d, 2, $J=8.67$, ArH ortho to Br), $7.09(\mathrm{~d}, 2, J=8.10$, ArH ortho to N), $3.21(\mathrm{t}, J=7.51,2$, $\left.\mathrm{N}-\mathrm{CH}_{2}\right), 1.60-1.42\left(\mathrm{~m}, 2, \mathrm{~N} \beta-\mathrm{CH}_{2}\right), 1.33$ (sext, 2, $\left.J=6.96 \gamma-\mathrm{CH}_{2}\right)$ and $0.91\left(\mathrm{t}, 3, J=7.15, \mathrm{CH}_{3}\right)$.

The $R=\mathrm{C}_{6} \mathrm{H}_{13}$ homologue was prepared in a similar manner. The reaction mixture was stirred for 96 h at 50°, yield $=77.9 \%$ (21.0% of 15 was recovered $)$.

7.12. 2,2,2-Trifluoro-N-butyl-N-[4-(3-hydroxy -

 3-methyl-1-butynyl)phenyl]-acetamide 21 ($R=\mathrm{C}_{4} \mathrm{H}_{9}$)To stirred solution of the bromoamide $\mathbf{1 8}(R=\mathrm{Bu}$, $10.76 \mathrm{~g}, 33.2 \mathrm{mmol})$ and MEBYNOL ($6.98 \mathrm{~g}, 83 \mathrm{mmol}$) in $E t_{3} \mathrm{~N}(130 \mathrm{ml})$ at r.t. were added $\mathrm{PPh}_{3}(0.21 \mathrm{~g}$, $0.8 \mathrm{mmol}), \mathrm{CuI}(0.05 \mathrm{~g}, 0.29 \mathrm{mmol})$ and $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PdCl}_{2}$ $(500 \mathrm{mg}, 0.08 \mathrm{mmol})$. The reaction mixture was heated under reflux for 17 h and the insoluble solids removed by filtration and washed thoroughly with $\mathrm{Et}_{2} \mathrm{O}$. Removal of the solvent in vacuo from the filtrate gave 9.50 g (87.4%) of the product $21(R=\mathrm{Bu})$ as a dark yellow oil. This material was used without further purification.

The following homologues were prepared from the iodides 19 in the same manner.
$R=H$. The crude product was stirred in glac. HOAC $(10 \mathrm{ml}, 74.6 \mathrm{mmol})$ at 0° for 10 min , and then r.t. for 1 h ; the solvent was then removed in vacuo. The remaining material was stirred in $\mathrm{H}_{2} \mathrm{O}(2 \times 200 \mathrm{ml})$ and the solid removed from the filtrate in vacuo to give a light tan solid (97.3%) as the product $21(R=\mathrm{H})$, m.p. $=132.3-135.3^{\circ}$. IR (Nujol) 3411 (wk, d, NH), 3251 (wk, OH), 2362, 2330 (wk C $\equiv \mathrm{C}$), 1716 (str, amide) and 1607 (str, Ar); ${ }^{1} \mathrm{H}$ NMR 7.95 (br s, 1, NH), 7.52 (d, 2, $J=8.88$, ArH ortho to amide), 7.41 (d, 2, $J=8.92$, ArH ortho to $\mathrm{C} \equiv \mathrm{C}$), 1.90 ($\mathrm{br}, \mathrm{s}, 1, \mathrm{OH}$) and $1.60\left(\mathrm{~s}, 6,2 \mathrm{CH}_{3}\right)$. This material was used without further purification.
$R=C_{5} H_{11}$. The crude product was purified by flash chromatography on silica gel using 10% hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give 67.1% of the product $21\left(R=\mathrm{C}_{5} \mathrm{H}_{11}\right)$ as a colourless solid, m.p. 68-70 ${ }^{\circ}$. ${ }^{1} \mathrm{H}$ NMR 7.48 (d, 2, $J=8.54$, ArH ortho to $\mathrm{C} \equiv \mathrm{C}$), 7.15 ($\mathrm{d}, 2, J=8.34$, ArH ortho to amide), 3.71 (t, 2, $J=7.55, \mathrm{NCH}_{2}$), 2.09 ($\mathrm{s}, 1, \mathrm{OH}$), 1.63 (s, 6, $2 \mathrm{CH}_{3}$), 1.55 (quint, $2, J=5.96, \mathrm{~N} \beta-\mathrm{CH}_{2}$), $1.31-1.24$ ($\mathrm{m}, 4,2 \mathrm{CH}_{2}$) and $0.87\left(\mathrm{t}, 3, J=6.59, \mathrm{CH}_{3}\right)$. NMR spectra for $R=\mathrm{C}_{4}$ and C_{6} were similar.
$R=C_{6} H_{13}$. The crude product was purified by flash chromatography on silica gel using a 5% hexane in CHCl_{3} solution to give the product as a pale yellow liquid in 79.7% yield. GC $\left(100-200^{\circ}\right.$ gradient) $t_{\mathrm{R}}=7.46 \mathrm{~min}$. (100\%).
7.13. 4-Ethynylbenzenamine $4\left(R=R^{\prime}=H\right)$

To a refluxing solution of the hydroxy compound 21 ($R=\mathrm{H}, 9.8 \mathrm{~g}, 36 \mathrm{mmol}$) in $i-\mathrm{PrOH}(100 \mathrm{ml})$ was quickly added $\mathrm{KOH}(5.6 \mathrm{~g}, 101 \mathrm{mmol})$. This mixture was heated under reflux for 3 h , cooled to r.t. and the solvent removed in vacuo. The remaining material was stirred in cold hexane $(20 \mathrm{ml})$ to remove traces of $i-\mathrm{PrOH}$, the solvent decanted, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ added to the remaining solid and the resulting solution filtered through silica gel.

Removal of the solvents from the filtrate in vacuo gave $2.53 \mathrm{~g}(96.9 \%)$ of the aniline $\mathbf{4}\left(R=R^{\prime}=\mathrm{H}\right)$ as a yellow solid, m.p. 99.5-101.4. IR (Nujol) 3487, 3401 (wk, NH2) 3263 (wk, C $\equiv \mathrm{CH}$), 2104 (wk, C $\equiv \mathrm{C}$) and 1630 (str, Ar); ${ }^{1} \mathrm{H}$ NMR 7.30 (d, 2, $J=8.63$, ArH ortho to $\mathrm{C} \equiv \mathrm{C}$), 6.60 (d, 2, $J=8.14$, ArH ortho to N), 2.96 (s, 1, $\mathrm{C} \equiv \mathrm{CH}$), and 2.41 (br s, 2, NH_{2}).
$R=n-B u$ was prepared in the same manner, as a yellow liquid in 79.7% yield. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) R_{f}=0.5$; IR (film) 3418 (wk, NH), 3218 (med, $\mathrm{C} \equiv \mathrm{CH}$), 2110 (med, $\mathrm{C} \equiv \mathrm{C}$) and 1624 (str, Ar); ${ }^{1} \mathrm{H}$ NMR 7.29 (d, 2, $J=8.75$ ortho to $\mathrm{C} \equiv \mathrm{C}$), 6.48 (d, 2, $J=8.75$, ArH ortho to N), 3.78 (br s, 1, NH), 3.09 ($\mathrm{t}, 2, J=6.96, \mathrm{NCH}_{2}$), 2.94 (s, $1, \mathrm{C} \equiv \mathrm{CH}$), $1.65-1.50$ (quint, $2, J=6.39, \mathrm{~N} \beta-\mathrm{CH}_{2}$), $1.50-1.20\left(\mathrm{~m}, 2, \mathrm{~N} \gamma-\mathrm{CH}_{2}\right)$ and $0.94\left(\mathrm{t}, 3, J=7.24, \mathrm{CH}_{3}\right)$.
The $R=\mathrm{C}_{5}$ and C_{6} homologues were prepared in the same manner except that the remaining material after removal of the solvent from the reaction mixture was dissolved in EtOAC. This solution was washed with $\mathrm{H}_{2} \mathrm{O}$, dried, filtered and the solvent removed from the filtrate in vacuo. The remaining material was purified by flash chromatography on silica gel using 1:1 hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give the colourless liquids of $R=\mathrm{C}_{5}(67.6 \%)$ and $\mathrm{C}_{6}(82.7 \%) .{ }^{1} \mathrm{H}$ NMR spectra were similar to that given for $R=\mathrm{C}_{4}$.

7.14 2,2,2-Trifluoro-N,N-dimethyl-N-[4(3-hydroxy -3-methyl-1-butynl)phenyl]acetamide 20

This compound was prepared using the same procedure as described for the synthesis of the amide 21. Purification of the crude product by chromatograph y on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave 38.5% of the amide $\mathbf{2 0}$. IR (film) 3373 (med br, OH), 2215 (wk, $\mathrm{C} \equiv \mathrm{C}$) and 1610 (str, Ar); ${ }^{1} \mathrm{H}$ NMR 7.29 (d, 2, $J=9.56$, ArH ortho to $\mathrm{C} \equiv \mathrm{C}$), 6.61 (d, 2, $J=9.00$, ArH ortho to N), 2.96 ($\mathrm{s}, 6$, $2 \mathrm{~N}-\mathrm{Me})$, and $1.61\left(\mathrm{~s}, 6,2, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR 149.8, 132.5, 111.7, 109.6, 91.6, 82.7, 65.4, 40.0.

7.15. 4-Ethynyl- N, N-dimethylbenzenamine $\mathbf{4}$
 $$
\left(R=R^{\prime}=M e\right)
$$

Powdered $\mathrm{NaOH}(0.76 \mathrm{~g}, 18.9 \mathrm{mmol})$ was added to a stirred solution of the alkynol $20(1.8 \mathrm{~g}, 9.0 \mathrm{mmol})$ in toluene (250 ml). This reaction mixture was heated under reflux for 17 h , cooled to r.t. and filtered. The solvent was removed from the filtrate in vacuo and the remaining material chromatographed on silica gel using 50% $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane to give the aminoalkyne $4\left(R=R^{\prime}=\mathrm{Me}\right.$, $500 \mathrm{mg}, 38.2 \%$). TLC ($1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane, $R_{f}=0.50$; IR (film) 3248 (str $\mathrm{C} \equiv \mathrm{CH}$), 2111 (med, $\mathrm{C} \equiv \mathrm{C}$) and 1624 (med, Ar); ${ }^{1} \mathrm{H}$ NMR 7.29 (d, $J=9.00,2$, ArH ortho to $\mathrm{C} \equiv \mathrm{C}$), 6.62 (d, $J=9.03,2$, ArH ortho to N) and 2.98 (s, 7, $\mathrm{C} \equiv \mathrm{CH}$ and $2 \mathrm{~N}-\mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR 149.95, 132.8, 111.3, 108.3, 84.7, 74.8, and 39.6 .
7.16. Diacetylenes 2 ($X=C_{5} H_{11}, R=R^{\prime}=H$)

To a stirred solution of the acetylene $4\left(R=R^{\prime}=\mathrm{H}\right.$, $2.53 \mathrm{~g}, \quad 21.6 \mathrm{mmol}), \quad \mathrm{CuCl}_{2}(40 \mathrm{mg}), \mathrm{NH}_{2} \mathrm{OH} \mathrm{HCl}$ $(1.50 \mathrm{~g}=21.6 \mathrm{mmol})$ and $\mathrm{BuNH}_{2}(40 \mathrm{ml})$ in MeOH $(100 \mathrm{ml})$ under N_{2} at 0°, was added dropwise a solution of the bromoacetylene $3\left(X=\mathrm{C}_{5} \mathrm{H}_{11}, 15.15 \mathrm{~g}, 20.5 \mathrm{mmol}\right)$ in $\mathrm{MeOH}(50 \mathrm{ml})$. The mixture was stirred at 0° for 6 h , at r.t. for 17 h and then cooled to 0°. The resulting precipitate was removed by filtration, washed with cold MeOH and then recrystallized from MeOH to give $3.79 \mathrm{~g}(61.0 \%)$ of the purified diacetylene $2\left(X=\mathrm{C}_{5} \mathrm{H}_{11}\right.$, $R=R^{\prime}=\mathrm{H}$). IR (Nujol) 3430, 3400, 3335 (med, NH_{2}), 2222, 2137 ($\mathrm{wk}, \mathrm{C} \equiv \mathrm{C}$) and 1631, 1605 (str, Ar); ${ }^{1} \mathrm{H}$ NMR 7.42 (d, $J=8.47,2$, ArH meta to C_{5}), 7.33 (d, 2, $J=8.55$, ArH meta to NH_{2}), 7.13 (d, 2, $J=8.14$, ArH ortho to C_{5}), 6.59 (d, 2, $J=8.50$, ArH ortho to NH_{2}), 3.89 (br s, 2, NH_{2}), 2.60 (t, 2, $J=7.65, \mathrm{ArCH}_{2}$), 1.58 (quint, $\left.2, J=7.48, \beta-\mathrm{CH}_{2}\right), 1.35-1.25\left(\mathrm{~m}, 4,2 \mathrm{CH}_{2}\right)$ and 0.89 ($\mathrm{t}, 3, J=6.60, \mathrm{CH}_{3}$), and ${ }^{13} \mathrm{C}$ NMR 144.2, 134.0, 132.3, $132.2,128.5,119.2,114.6,110.8,82.4,81.1,73.8,72.2$, $35.9,31.4,30.8,22.5$, and 14.0 .

The following analogues were prepared in the same manner.
$X=C_{3} H_{7}, R=R^{\prime}=H$. This was purified by chromatography on silica gel using 1:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in hexane (R_{f} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}=0.42$) and then recrystallized from MeOH , yield 50.2%.
$X=N O_{2}, R=R^{\prime}=H$. This was purified by chromatography on silica gel using 1:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane ($R_{f}=0.40$), yield 38.7%, and then recrystallized from MeOH . IR (Nujol) 3487, 3381 (med, NH_{2}), 2196 (str, C $\equiv \mathrm{C}$), 1643 (med, Ar) and 1597, 1347 (str, NO_{2}); ${ }^{1} \mathrm{H}$ NMR 8.23 (d, 2, $J=8.96$, ArH ortho to NO_{2}), 7.80 (d, $2, J=8.88$, ArH meta to NO_{2}), 7.28 (d, 2, $J=8.52$, ArH meta to NH_{2}), 6.54 (d, 2, $J=8.54$, ArH ortho to NH_{2}) and 5.93 (br s, 2, NH_{2}).
$X=C_{5} H_{11}, \quad R=R^{\prime}=M e . \quad$ Crude \quad yield $=76.3 \%$; purified by recrystallization from MeOH , yield $=45.3 \%$. IR (Nujol) 2190, 2130 (wk, C $\equiv \mathrm{C}$) and 1603 (str, Ar); ${ }^{1} \mathrm{H}$ NMR 7.41 (d, 2, $J=8.30$, ArH meta to C_{5}), 7.39 (d, 2, $J=8.95$, ArH meta to N), 7.13 (d, 2, $J=8.38$, ArH ortho to C_{5}), $6.60(\mathrm{~d}, 2, J=9.12$, ArH ortho to N$), 2.98$ (s, $\left.6, \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.59\left(\mathrm{t}, 2, J=7.66, \mathrm{ArCH}_{2}\right), 1.70-1.50$ $\left(\mathrm{m}, 2, \beta-\mathrm{CH}_{2}\right), 1.40-1.20\left(\mathrm{~m}, 4,2 \mathrm{CH}_{2}\right)$ and $0.89(\mathrm{t}, 3$, $\left.J=6.63, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR 150.5, 144.1, 133.8, 132.4, 132.2, 128.5, 119.4, 111.6, 108.0, 83.1, 81.1, 74.0, ~ 72.0, 40.7, 35.9, 31.4, 30.9, 29.7, 22.5, and 14.0.
$X=C_{5} H_{11}, R=H, R^{\prime}=C_{4} H_{9}$. Crude yield $=71.1 \%$; purified by recrystallization from MeOH , yield $=50.0 \%$. IR (Nujol) 3443 (wk, NH), 2208, 2138 (wk, C $\equiv \mathrm{C}$), and 1620 (str, Ar); ${ }^{1} \mathrm{H}$ NMR 7.42 (d, 2, $J=8.01$, ArH meta to C_{5}), 7.34 (d, 2, $J=8.89$, ArH meta to N), 7.13 (d, 2, $J=8.14$, ArH ortho to C_{5}) $6.50(\mathrm{~d}, 2, J=8.55, \mathrm{ArH}$ ortho to N), $3.90(\mathrm{br} \mathrm{s}, 1, \mathrm{NH}), 3.12(\mathrm{t}, 2, J=7.65$,
NCH_{2}), $2.60\left(\mathrm{t}, 2, J=7.65, \mathrm{ArCH}_{2}\right), 1.68-1.20(\mathrm{~m}, 10$, $5 \mathrm{CH}_{2}$), $0.96\left(\mathrm{t}, 3, J=6.74\right.$, amino $\left.\mathrm{CH}_{3}\right)$ and $0.89(\mathrm{t}, 3$, $J=6.56$, alkyl CH_{3}).
$X=F, R=H, R^{\prime}=C_{4} H_{9}$. Purification was by chromatography on silica gel using $1: 1$ hexane $/ \mathrm{MeOH}$, yield $=$ 53.9%. ${ }^{1} \mathrm{H}$ NMR 7.49 (dd, 2, $J=8.96,5.33$, ArH meta to F), 7.35 (d, 2, $J=8.79$, ArH meta to N), $7.02(\mathrm{t}, 2$, $J=8.75$, ArH ortho to F), $6.51(\mathrm{~d}, 2, J=8.83$, ArH ortho to N), 3.91 ($\mathrm{br} \mathrm{s}, 1, \mathrm{NH}$), $3.14\left(\mathrm{q}, 2, J=6.92, \mathrm{NCH}_{2}\right)$, 1.66-1.10 (m, 4, $2 \mathrm{CH}_{2}$) and $0.96\left(\mathrm{t}, 2, J=7.18, \mathrm{CH}_{3}\right)$.
$X=N O_{2}, R=H, R^{\prime}=C_{5} H_{11}$. The solvent was removed from the cooled reaction mixture in vacuo. The residue was dissolved in a $1: 1$ mixture (200 ml) of $\mathrm{Et}_{2} \mathrm{O} / \mathrm{THF}$. This solution was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 100 \mathrm{ml})$, dried, filtered, and the solvent removed from the filtrate to give 86.7% of the crude product. Purification was by flash chromatography on silica gel using 5% EtOAC in hexane; the product was rechromatographed using $25 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in hexane and then recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane to give 46.7% of the purified diacetylene. Characterization data were nearly identical to those for $R^{\prime}=\mathrm{C}_{6} \mathrm{H}_{13}$.
$X=N O_{2}, R=H, R^{\prime}=C_{6} H_{13}$. This was prepared in the same manner as for $R^{\prime}=\mathrm{C}_{5} \mathrm{H}_{11}$. Purification was by flash chromatography $(2 \times)$ on silical gel using $25 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane followed by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane, yield $=43.8 \%$. TLC $\left(\mathrm{CHCl}_{3}\right) R_{f}=0.70$; IR (Nujol) 3411 (wk, NH), 2196 (str, C \equiv C) and 1607 (str doublet, Ar); ${ }^{1} \mathrm{H}$ NMR 8.18 (d, 2, $J=8.87$, ArH ortho to NO_{2}), $7.62\left(\mathrm{~d}, 2, J=8.50\right.$, ArH meta to NO_{2}), $7.36(\mathrm{~d}, 2, J=8.50$, ArH meta to N), 6.51 (d, 2, $J=8.54$, ArH ortho to N), $4.00(\mathrm{~s}, 1, \mathrm{NH}), 3.13(\mathrm{t}, 2, J=2.96$, NCH_{2}), 1.62 (quint, $2, J=6.72, \beta-\mathrm{CH}_{2}$), $1.43-1.34$ $\left(\mathrm{m}, 6,3 \mathrm{CH}_{2}\right)$ and $0.90\left(\mathrm{t}, 3, J=6.41, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR 149.6, 147.0, 134.3, 129.5, 123.6, 112.1, 107.7, 86.8, 80.2, 78.6, 71.5, 43.4, 31.5, 29.2, 26.7, 22.6 and 14.0.

7.17. N,N-Dibutyl-4-[4-(4-pentylphenyl)-

1,3-butadiynylbenzamine 5 ($X=C_{5} H_{11}$)
A slurry of the aminodiacetylene $2\left(R=R^{\prime}=\mathrm{H}, 0.96 \mathrm{~g}\right.$, $3.34 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(0.89 \mathrm{~g}, 23.4 \mathrm{mmol})$ in anhyd. THF (25 ml) was added dropwise to a vigorously stirred mixture of $3 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(1.5 \mathrm{ml})$ and $\mathrm{PrCHO}(1.69 \mathrm{~g}$, 23.4 mmol in 20 ml anhyd. THF at -20°). The reaction was stirred at -20° for $30 \mathrm{~min} ; 3-4$ pellets of NaOH were added and the mixture warmed to r.t. Insoluble materials were allowed to settle and the liquid was decanted and retained. The remaining material was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 50 \mathrm{ml})$ and the $\mathrm{Et}_{2} \mathrm{O}$ layer combined with the decanted liquid. The combined $\mathrm{Et}_{2} \mathrm{O}$ solution was washed with brine (30 ml), dried, filtered and the solvent removed from the filtrate in vacuo. The remaining material was purified by chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ followed by recrystallization from MeOH
to give the diacetylene $5\left(X=\mathrm{C}_{5} \mathrm{H}_{11}\right)$ in a 73.14% yield (0.98 g). TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) R_{f}=0.65$; IR (Nujol) 2203, 2130 (wk, C $\equiv \mathrm{C}$) and 1603 (str, Ar); ${ }^{1} \mathrm{H}$ NMR 7.42 (d, 2, $J=8.06$, ArH meta to C_{5}), $7.36(\mathrm{~d}, 2, J=8.79$, ArH meta to N), 7.13 (d, 2, $J=7.77$, ArH ortho to C_{5}), $6.54(\mathrm{~d}, 2$, $J=8.79$, ArH ortho to N), $3.28\left(\mathrm{t}, 4, J=7.51,2 \mathrm{NCH}_{2}\right)$, $2.60\left(\mathrm{t}, 2, J=7.69, \mathrm{ArCH}_{2}\right), 1.70-1.20\left(\mathrm{~m}, 14,7 \mathrm{CH}_{2}\right)$, $0.96\left(\mathrm{t}, 6, J=7.14\right.$, amino $\left.\mathrm{CH}_{3}\right), 0.89(\mathrm{t}, 3, J=6.78$, CH_{3}); ${ }^{13} \mathrm{C}$ NMR 148.4, 144.0, 133.9, 132.2, 119.5, 111.1, $106.7,83.4,81.0,74.2,71.9,50.7,36.9,31.4,30.9,29.3$, 22.5, 20.3 and 14.0.

The following analogues were prepared in the same manner:

Compound $2\left(X=\mathrm{NO}_{2}, R=R^{\prime}=B u\right)$. Purified yield $=$ 47.7%. TLC (hexane) $R_{f}=0.65$; IR (Nujol) 2203 (str, C $\equiv \mathrm{C}$) and 1604 (str, Ar); ${ }^{1} \mathrm{H}$ NMR 8.19 (d, 2, $J=8.96$, ArH ortho to NO_{2}), 7.62 (d, $2, J=8.95$, ArH meta to NO_{2}), 7.38 (d, 2, $J=8.99$, ArH meta to N), 6.55 (d, 2, $J=9.07$, ArH ortho to N), $3.29\left(\mathrm{t}, 4,2 \mathrm{NCH}_{2}\right)$, 1.65-1.49 (quint, $4, J=7.37,2 \beta-\mathrm{CH}_{2}$), 1.49-1.28 (sext, $\left.4, J=6.82,2 \gamma-\mathrm{CH}_{2}\right)$ and $0.96\left(\mathrm{t}, 6, J=7.14,2 \mathrm{CH}_{3}\right)$.

Compound $5\left(X=C_{3} H_{7} R^{\prime \prime}=M e\right)$. Purified yield $=$ 27.1%, recrystallized from MeOH. ${ }^{1} \mathrm{~N}$ NMR 7.43 (d, 2, $J=8.22$, ArH meta to C_{3}), 7.39 (d, 2, $J=8.99$, ArH meta to N), 7.13 (d, 2, $J=8.14$, ArH ortho to C_{3}), 6.61 (d, 2, $J=9.08$, ArH ortho to N), $3.00(\mathrm{~s}, 6,2 \mathrm{NMe})$, 2.58 ($\mathrm{t}, 2, J=7.55, \mathrm{ArCH}_{2}$), 1.61 (sext, $2, J=7.44, \beta-\mathrm{CH}_{2}$) and $0.91\left(\mathrm{t}, 3, J=7.31, \mathrm{CH}_{3}\right)$.
7.18. N-Butyl-N-methyl-4-[4-(4-pentylphenyl)-1,3-butadiynyl]benzenamine $6\left(R^{\prime \prime}=M e\right)$
To a solution of the diacetylene $2\left(X=\mathrm{C}_{5} \mathrm{H}_{11}\right.$, $\left.R=\mathrm{Bu}, R^{\prime}=\mathrm{H}, 1.20 \mathrm{~g}, 3.50 \mathrm{mmol}\right)$ in dry DMF $(10 \mathrm{ml})$ was added $\mathrm{NaH}(160 \mathrm{mg}, 3.84 \mathrm{mmol})$. After stirring this mixture for 2 h , MeI ($0.75 \mathrm{~g}, 5.24 \mathrm{mmol}$) was added. The reaction mixture was warmed to 40°, stirred for 40 h , cooled to r.t., diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with $\mathrm{H}_{2} \mathrm{O}$, dried, filtered, and the solvent removed from the filtrate in vacuo. Chromatography of this material on silica gel using $10 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane gave 520 mg (41.6%) of the product. Further purification was achieved by recrystallization from MeOH to give the diacetylene 6 ($R^{\prime \prime}=\mathrm{Me}$). TLC ($10 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane) $R_{f}=0.20$; IR (Nujol) 2216, 2144 (med, $\mathrm{C} \equiv \mathrm{C}$) and 1617 (str, Ar); ${ }^{1} \mathrm{H}$ NMR 7.44 (d, 2, $J=8.06$, ArH meta to C_{5}), 7.40 (d, 2, $J=7.69$, ArH meta to N), 7.15 (d, 2, $J=8.01, \mathrm{ArH}$ ortho to C_{5}), $6.60(\mathrm{~d}, 2, J=9.00$, ArH ortho to N), 3.36 ($\mathrm{t}, 3, J=7.25, \mathrm{NCH}_{2}$), $2.99\left(\mathrm{~s}, 3, \mathrm{NCH}_{3}\right), 2.62(\mathrm{t}, 2$, $\left.J=7.55, \mathrm{ArCH}_{2}\right), 1.62-1.55\left(\mathrm{~m}, 6,3 \mathrm{CH}_{2}\right), 1.55-1.29$ $\left(\mathrm{m}, 4,2 \mathrm{CH}_{2}\right.$ in $\left.\mathrm{C}_{5}\right), 0.97\left(\mathrm{t}, 3, J=7.00, \mathrm{C}_{4} \mathrm{CH}_{3}\right)$ and $0.91\left(\mathrm{t}, 3, J=6.96, \mathrm{C}_{5} \mathrm{CH}_{3}\right)$.

Compound $2\left(X=F, R=B u, R^{\prime \prime}=M e\right)$ was prepared in the same manner. Purification was by chromatography on silica gel using hexane as the solvent followed
by recrystallization from MeOH , yield $=12.7 \%$. ${ }^{1} \mathrm{H}$ NMR 7.50 (dd, $2, J=8.97,5.35$, ArH meta to F), 7.39 (d, 2, $J=9.08$, ArH meta to N), $7.03(\mathrm{t}, 2, J=8.79$, ArH ortho to F), $6.59(\mathrm{~d}, 2, J=9.08$, ArH ortho to N$), 3.35(\mathrm{t}, 2, J=$ $\left.7.37, \mathrm{NCH}_{2}\right), 2.98\left(\mathrm{~s}, 3, \mathrm{~N} \mathrm{CH}_{3}\right), 1.65-1.50\left(\mathrm{~m}, 2, \beta-\mathrm{CH}_{2}\right)$, $1.45-1.25\left(\mathrm{~m}, 2, \gamma-\mathrm{CH}_{2}\right)$ and $0.96\left(\mathrm{t}, 3, J=7.14, \mathrm{CH}_{3}\right)$.

7.19. N-Butyl-N-ethyl-4-[4-(4-pen tylphenyl)-

1,3-butadiynyl]benzenamine $6\left(R^{\prime \prime}=C_{5} H_{5}\right)$

A mixture of the aminodiacetylene $2\left(X=\mathrm{C}_{5} \mathrm{H}_{11}\right.$, $R=\mathrm{H}, \quad 900 \mathrm{mg}, \quad 2.62 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(1.10 \mathrm{~g}$, $13.1 \mathrm{mmol})$ in EtI $(30 \mathrm{ml})$ was heated under reflux for 120 h . The cooled reaction mixture was dissolved in $\mathrm{Et}_{2} \mathrm{O}($ c. 50 ml$)$, washed with $\mathrm{H}_{2} \mathrm{O}$, dried, filtered and the solvent removed from the filtrate to give the crude product. Purification of this material by chromatograph y on silica gel using $20 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane gave 560 mg (57.7%) of the product. It was further purified by recrystallization from MeOH to give the dialkylaminodiacetylene $6\left(R^{\prime}=\mathrm{C}_{2} \mathrm{H}_{5}\right)$. TLC $(1: 1 \mathrm{MeOH} /$ hexane $)$ $R_{f}=0.22$; IR (Nujol) 2210, 2144 (wk, C $\equiv \mathrm{C}$), and 1611 (str, Ar); ${ }^{1} \mathrm{H}$ NMR 7.41 (d, $2, J=8.10$, ArH meta to C_{5}), $7.36(\mathrm{~d}, 2, J=8.79$, ArH meta to N$), 7.12(\mathrm{~d}, 2, J=7.94$, ArH ortho to C_{5}) 6.55 (d, 2, $J=8.87$, ArH ortho to N), 3.37 (q, 2, $\left.J=7.04, \mathrm{NCH}_{2} \mathrm{Me}\right), 3.26(\mathrm{t}, 2, J=7.59$, $\left.\mathrm{NCH}_{2} \mathrm{Pr}\right), 2.59\left(\mathrm{t}, 2, \mathrm{ArCH}_{2}\right), 1.70-1.45\left(\mathrm{~m}, 4,2 \beta-\mathrm{CH}_{2}\right)$, $1.45-1.15\left(\mathrm{~m}, 8,4 \mathrm{CH}_{2}\right), 1.15\left(\mathrm{t}, 3, J=6.96, \mathrm{C}_{2} \mathrm{CH}_{3}\right)$, $0.95\left(\mathrm{t}, 3, J=7.33, \mathrm{C}_{4} \mathrm{CH}_{3}\right)$ and $0.85(\mathrm{t}, 3, J=6.96$, $\left.\mathrm{C}_{5} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR 148.8, 144.5, 134.5, 132.7, 129.0, $120.0,111.6,107.3,83.8,81.5,74.7,72.5,50.6$ and 45.4.

This work was supported in part by the NSF Science and Technology ALCOM centre grant DMR89-20147. Synthesis of some of the intermediates as well as some of the characterization data was provided by S. Hummel, M. Lohman, K. Miller, R. Stayschick, and M. Walsh.

References

[1] Juang, T. M., Chen, Y. N., Lung, S. H., Lu, Y. H., and Hsu, C. S., 1993, Liq. Cryst., 15, 529.
[2] Meng, H.-H. B., Dalton, L. R., and Wu, S.-T., 1994, Mol. Cryst. liq. Cryst., 250, 303.
[3] Fouquey, C., Lehn, J. M., and Matthête, J., 1987, J. chem. Soc., chem. Commun., 1424.
[4] Graham, E. M., Miskowski, V. M., Perry, J. W., Coulter, D. R., Stiegman, A. E., Shaefer, W. P., and Marsh, R. E., 1989, J. Am. chem. Soc., 111, 8771.
[5] Stiegman, A. E., Graham, E., Perry, K. J., Khundkar, L. R., Cheng, L. T., and Perry, J. W., 1991, J. Am. chem. Soc., 113, 7658.
[6] Hudson, C. M., Shenoy, R. A., Neubert, M. E., and Petschek, R. G., 1999, Liq. Cryst., 26, 241.
[7] Grant, B., Clecak, N. J., and Cox, R. J., 1979, Mol. Cryst. liq. Cryst., 51, 209.
[8] Wu, S.-T., Margerum, J. D., Meng, H. B., Dalton, L. R., Hsu, C.-S., and Lung, S.-H., 1992, Appl. Phys. Lett., 61, 630.
[9] Choe, E. W., U.S. Patent 4703096.
[10] Bestmann, H. J., and Frey, H., 1980, Liebigs Ann. Chem., 2061.
[11] Baird, M. S., and Mitra, M., 1979, J. chem. Soc., chem. Coттип., 563.
[12] Alberti, A., Pedulli, R. F., and Ciminale, F., 1982, Tetrahedron, 38, 3605.
[13] Lu, Y.-H., Tsay, K.-T., Hsu, C.-S., and Chang, H.-L., 1994, Mol. Cryst. liq. Cryst., 250, 85.
[14] Tahakashi, S., Kuroyama, Y., Sonogashira, K., and Hagihara, N., 1980, Synthesis, 627.
[15] Wong, M. S., and Nicoud, J. F., 1994, Tetrahedron Lett., 35, 6113.
[16] (a) Nguyen, P., Todd, S., Van den Biggelaar, D., Taylor, N. J., Marder, T. B., Wittmann, F., and Friend, R. H., 1994, Synlett, 299; (b) Nguyen, P., Yuan, Z., Agocs, L., Lesley, G., and Marder, T. B., 1994, Inorg. Chim. Acta., 220, 289.
[17] Bardamova, M. I., Trotsenko, Z. P., and KotlyarevskiI, I. L., 1982, Iz. Akad Nauk, S.S.S.R., Ser. Khim., 1184: Chem. Abst., 1982, 97, 109622h.
[18] Schumbert, W. M., and Green, D. C., 1980, Tetrahedron Lett., 21, 4237.
[19] Akiyama, S., Nakatsuii, S., Yoshida, K., Nakashima, K., Hagiwara, T., Suruta, H. T., and Yoshida, T., 1983, Bull. chem. Soc. Jpn., 56, 361.
[20] Neubert, M. E., Hummel, S. J., Bhatt, J. C., Keast, S. S., Lackner, A. M., Margerum, J. D., and Sherman, E., 1995, Mol. Cryst. liq. Cryst., 260, 287.
[21] Nordlander, J. E., Catalane, D. B., Eberlein, T. H., Farkas, L. V., Howe, R. S., Stevens, R. M., and Tripoulas, N. A., 1978, Tetrahedron Lett., 4987.
[22] Harland, P. A., Hodge, P., Maghan, W., and Wildsmith, E., 1984, Synthesis, 941.
[23] Melissaris, A. P., and Litt, M. H., 1994, J. org. Chem., 59, 5818.
[24] Wu, S.-T., Finkenzeller, V., and Reiffenrath, V., 1989, J. appl. Phys., 65, 4374.
[25] Bourne, E. J., Henry, S. H., Tatlow, C. E. M., and Tatlow, J. C., 1952, J. chem. Soc., 4014.

[^0]: Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
 This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

 The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

[^1]: *Author for correspondence, e-mail: mneubert@1ci.kent.edu

[^2]: ${ }^{\mathrm{a}} \mathrm{Cr}=$ crystallization temperature on cooling at $2^{\circ} \min ^{-1}, \mathrm{~N}=$ nematic phase, $\mathrm{I}=$ isotropic liquid, dec. $=$ decomposes.
 ${ }^{\mathrm{b}}$ A crystal-to-crystal change occurred at $104.5-106.9^{\circ} \mathrm{C}$ on reheating these crystals.
 ${ }^{\mathrm{c}}$ Parentheses indicate a monotropic phase.
 ${ }^{\mathrm{d}}$ These crystals $\left(\mathrm{Cr}_{1}\right)$ converted to another form $\left(\mathrm{Cr}_{2}\right)$ on cooling. Cr_{2} converted to Cr_{1} on reheating at 86.8-87.0 which melted to the isotropic liquid.
 ${ }^{e}$ Shifting of the clearing temperature in repeated runs suggests this material is unstable at this temperature.
 ${ }^{\mathrm{f}}$ Showed a crystal change at 90.7° on heating.
 ${ }^{\mathrm{g}}$ The broad clearing temperature may be due to hydrogen bond formation.

